Projections of global mercury emissions in 2050.

نویسندگان

  • David G Streets
  • Qiang Zhang
  • Ye Wu
چکیده

Global Hg emissions are presented for the year 2050 under a variety of assumptions about socioeconomic and technology development. We find it likely that Hg emissions will increase in the future. The range of 2050 global Hg emissions is projected to be 2390-4860 Mg, compared to 2006 levels of 2480 Mg, reflecting a change of -4% to +96%. The main driving force for increased emissions is the expansion of coal-fired electricity generation in the developing world, particularly Asia. Our ability to arrest the growth in Hg emissions is limited by the relatively low Hg removal efficiency of the current generation of emission control technologies for coal-fired power plants (flue-gas desulfurization). Large-scale deployment of advanced Hg sorbent technologies, such as Activated Carbon Injection, offers the promise of lowering the 2050 emissions range to 1670-3480 Mg, but these technologies are not yet in commercial use. The share of elemental Hg in total emissions will decline from today's levels of approximately 65% to approximately 50-55% by 2050, while the share of divalent Hg will increase. This signals a shift from long-range transport of elemental Hg to local deposition of Hg compounds-though emissions of both species could increase under the worst case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and us...

متن کامل

Ancillary Benefits of Climate Policies for the Mitigation of Atmospheric Mercury Emissions

This study provides an analysis of the impact of global climate policies on mercury emissions using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model in the time horizon up to 2050. The time evolution of mercury emissions is based on projections of energy consumption provided by the Prospective Outlook for the Long term Energy System (POLES) model for a scenario with...

متن کامل

Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios.

Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here, we examine source-receptor relationships for present-day conditions and four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track merc...

متن کامل

Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050

[1] This paper presents estimates for global N and P emissions from sewage for the period 1970–2050 for the four Millennium Ecosystem Assessment scenarios. Using country-specific projections for population and economic growth, urbanization, development of sewage systems, and wastewater treatment installations, a rapid increase in global sewage emissions is predicted, from 6.4 Tg of N and 1.3 Tg...

متن کامل

Flying into the future: aviation emissions scenarios to 2050.

This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2009